Photoemission-based microelectronic devices
نویسندگان
چکیده
The vast majority of modern microelectronic devices rely on carriers within semiconductors due to their integrability. Therefore, the performance of these devices is limited due to natural semiconductor properties such as band gap and electron velocity. Replacing the semiconductor channel in conventional microelectronic devices with a gas or vacuum channel may scale their speed, wavelength and power beyond what is available today. However, liberating electrons into gas/vacuum in a practical microelectronic device is quite challenging. It often requires heating, applying high voltages, or using lasers with short wavelengths or high powers. Here, we show that the interaction between an engineered resonant surface and a low-power infrared laser can cause enough photoemission via electron tunnelling to implement feasible microelectronic devices such as transistors, switches and modulators. The proposed photoemission-based devices benefit from the advantages of gas-plasma/vacuum electronic devices while preserving the integrability of semiconductor-based devices.
منابع مشابه
Photoemission measurements of Ultrathin SiO2 film at low take-off angles
The surface and interfacial analysis of silicon oxide film on silicon substrate is particularly crucial in the nano-electronic devices. For this purpose, series of experiments have been demonstrated to grow oxide film on Si (111) substrate. Then these films have been used to study the structure of the film by using X-ray photo emission spectroscopy (XPS) technique. The obtained results indicate...
متن کاملImaging of Buried 3D Magnetic Rolled-up Nanomembranes
Increasing performance and enabling novel functionalities of microelectronic devices, such as three-dimensional (3D) on-chip architectures in optics, electronics, and magnetics, calls for new approaches in both fabrication and characterization. Up to now, 3D magnetic architectures had mainly been studied by integral means without providing insight into local magnetic microstructures that determ...
متن کاملNanotechnology for Packaging
The use of implantable microelectronic devices for treatment of medical conditions, e.g. movement disorders, deafness and urinary incontinence has increased steadily over the years [1]. These devices use microelectronic components to sense biological activities in the im‐ planted patient. The microelectronic components must be protected from the surrounding tissue using insulating (hermetic) pa...
متن کاملMicroelectronic Circuits for Noninvasive Ear Type Assistive Devices
Title of Document: MICROELECTRONIC CIRCUITS FOR NONINVASIVE EAR TYPE ASSISTIVE DEVICES Koranan Limpaphayom, Ph.D., 2009 Directed By: Professor Robert W. Newcomb Department of Electrical and Computer Engineering An ear type system and its circuit realization with application as new assistive devices are investigated. The auditory brainstem responses obtained from clinical hearing measurements ar...
متن کاملPolymer Adhesives and Encapsulants for Microelectronic Applications
his article provides an overview of the use of polymer adhesives in microelectronic packaging, with key applications including die attachment, underfills, and encapsulants. For many applications, polymer adhesives provide several advantages over alternative materials, and polymers have been widely used for die attachment. In flip-chip devices, polymers are being used for electrical interconnect...
متن کامل